Yoann Jestin

Research Associate

[email protected]

Yoann Jestin received his PhD (2002) in solid state chemistry from the “Université du Maine” (France) working on a project supported by the French National Network in Research and Telecommunications. His work was related to the design, manufacturing and testing of large numerical aperture fluoride based optical fibers for the realization of an optical amplifier prototype working in the S-band telecommunication window. In 2003 he joined the research center on laser and application at the University of Lille as a postdoctoral student to study and characterize semiconductor quantum dots in amorphous thin films. After this period he joined the CNR-IFN (Trento, Italy) with a grant from the local government of province of Trento, to work on the development of ultra-transparent glass ceramics waveguides for the demonstration of an optical single frequency amplifier in the C-band telecommunication window. In 2009 he worked as a researcher at the Bruno Kessler Foundation (Trento, Italy) to conduct research on the micro-fabrication of nanocrystalline based silicon solar cells. Since 2013 he won a mobility fellowship to visit the INRS-EMT and experiment new materials and structures for integrated nonlinear optics.

Research interest

Optical spectroscopy, Photonic Band Gap materials, Sol-gel Chemistry, Rare earth spectroscopy, nonlinear optic, optical fibres, planar waveguides, micro resonators, plasmonic, optical sensors, integrated optic, solar cells.

Honors & Awards

  1. 2012 Second rank Fondazione Bruno Kessler Mobility program. 5.8k€
  2. 2008 – 2009: First rank postdoctoral fellowship CNR-IFN. 40k€
  3. 2004 – 2007: Postdoctoral fellowship Province of Trento. 180k€
  4. 1999 – 2002: Grant of the French research Ministry. 60k€

Book Chapters

  1. Down-Shifting of the Incident Light for Photovoltaic Applications. Jestin Yoann (2012) In: Sayigh A, (ed.) Comprehensive Renewable Energy, Vol 1, pp. 563–585. Oxford: Elsevier.
  2. Silicon Quantum Dots for Photovoltaics: A Review, Georg Pucker, Enrico Serra and Yoann Jestin (2012). Quantum Dots – A Variety of New Applications, Dr. Ameenah Al-Ahmadi (Ed.), ISBN: 978-953-51-0483-4, InTech, Available from: http://www.intechopen.com/books/quantum-dots-a-variety-of-new-applications/silicon-quantum-dots-for-photovoltaics

International Journals

  1. Quantum effects in silicon photovoltaics P. Ingenhoven, A. Anopchenko, A. Tengattini, D. Gandolfi, F. Sgrignuoli, G. Pucker, Y. Jestin, L. Pavesi and R. Balboni, Physica Status Solidi (A), (in press).
  2. Structural analysis and depth profiling of nanometric SiO2/SRO multilayers. M. Barozzi, S. Gennaro, M. Bersani, L. Vanzetti, Y. Jestin, G. Pucker, S. Milita, R. Balboni, Surface and interface analysis 45(1)(2013) pp 373-375.
  3. Silicon nanocrystals as a photoluminescence downshifter for solar cells. Z. Yuan, G. Pucker, A. Marconi, F. Sgrignuoli, O. Anopchenko, Y. Jestin, L. Ferrario, P. Bellutti, L. Pavesi, Solar Energy Materials & Solar Cells, 94(4) (2011) pp 1224-1227.
  4. Spherical Whispering Gallery Mode Microresonators. A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, G.C. Righini, Laser and photonics reviews, 4 (2010) pp 457-482.
  5. Photonic properties and applications of glass micro- and nanospheres. G.C. Righini, F. Cosi, G. Nunzi Conti, S. Pelli, S. Soria, E. Moser, Y. Jestin, M. Ferrari, P. Féron, A. Chiasera, A. Chiappini, C. Armellini, Phys. Status Solidi A, 206 (2009) pp 898-903.
  6. An alternative method to obtain direct opal photonic crystal structures. A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, L. Fortes, M. Clara Gonçalves, R. Guider, Y. Jestin, R. Retoux, G. Nunzi Conti, S. Pelli, Rui M. Almeida, G.C. Righini, Journal of Non-Crystalline Solids, 355 (2009) pp. 1167-1170.
  7. Er3+/Yb3+-activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering. A. Chiasera, C. Armellini, S.N.B. Bhaktha, A. Chiappini, Y. Jestin, M. Ferrari, E. Moser, A. Coppa, V. Foglietti, P.T. Huy, K. Tran Ngoc, G. Nunzi Conti, S. Pelli, G.C. Righini, G. Speranza, Journal of Non-Crystalline Solids, 355 (2009) pp. 1176–1179.
  8. Preparation and characterization of ZnO particles embedded in organic–inorganic planar waveguide by sol–gel route. A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, R. Guider, Y. Jestin, L. Minati, E. Moser, G. Nunzi Conti, S. Pelli, R. Retoux, G.C. Righini, G. Speranza, Journal of Non-Crystalline Solids, 355 (2009) pp. 1132–1135.
  9. Characterization of Er3+-doped fluoride glass ceramics waveguides containing LaF3 nanocrystals. B. Boulard, O. Péron, Y. Jestin, M. Ferrari, C. Duverger-Arfuso, Journal of Luminescence, 129 (2009) pp. 1637-1639.
  10. X-ray photoelectron spectroscopy of Er3+-activated SiO2–HfO2 glass-ceramic waveguides. L Minati, G Speranza, V Micheli, M Ferrari and Y Jestin, Journal Of Physics D: Applied Physics, 42 (2009) 015408.
  11. Structural investigation of photonic materials at the nanolevel using XPS. G. Speranza, L. Minati, A. Chiasera, A. Chiappini, Y. Jestin, M. Ferrari, G.C. Righini, Journal of Non-Crystalline Solids, 355 (2009) pp. 1157–1159.
  12. Er3+-activated sol–gel silica confined structures for photonic applications. A. Chiappini, C. Armellini, A. Chiasera, Y. Jestin, M. Ferrari, E. Moser, G. Nunzi Conti, S. Pelli, R. Retoux, G.C. Righini, Optical Materials, 31 (2009) pp. 1275–1279.
  13. Raman and Er3+ spectroscopy of hafnia single crystals and nanocrystals. M. Mattarelli, M. Montagna, F. Rossi, C. Tosello, N.D. Afify, M. Bettinelli, A. Speghini, C. Armellini, Y. Jestin, F. Rocca, S. Gialanella Optical Materials, 129 (2009) pp. 1362-1365.
  14. Enhanced spectroscopic properties in Er3+/Yb3+-activated fluoride glass–ceramics planar waveguides. O. Péron, C. Duverger-Arfuso, Y. Jestin, B. Boulard, M. Ferrari, Optical Materials, 129 (2009) pp. 1288-1291.
  15. Er3+-activated nanocomposite photonic glasses and confined structures. C. Armellin, A. Chiappini, A. Chiasera, M. Ferrari, Y. Jestin, E. Moser, G. Nunzi Conti, S. Pelli, A. Quandt, G.C. Righini, C. Tosello, Optical Materials, 31 (2009) pp1071-1074.
  16. Relationship between structure and optical properties in rare-earth-doped hafnium and silicon oxides: modeling and spectroscopic measurements. A. Monteil, M. El-Jouad, G. Alombert-Goget, S. Chaussedent, N. Gaumer, A. Mahot, A. Chiasera, Y. Jestin, M. Ferrari, Journal of Non-Crystalline Solids 354 (2008) pp. 4719-4722.
  17. Investigation of structural and optical properties of sputtered Zirconia thin films. F. Rebib, N. Laidani, G. Gottardi, V. Micheli, R. Bartali, Y. Jestin, E. Tomasella, M. Ferrari, L. Thomas, , European Physical Journal – Applied Physics 43 (2008) pp. 363-368.
  18. Glass Microspherical Lasers. G. Nunzi Conti, S. Soria, S. Berneschi, M. Brenci, S. Pelli, G.C. Righini, C. Armellini, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, L.Ghisa, P. Féron, Advances in Science and Technology 55 (2008) pp 46-55.
  19. Fabrication and Characterization of Silica Opals. C. Armellini, A. Chiappini, A. Chiasera, M. Ferrari, Y. Jestin, E. Moser, R. Retoux, G. Speranza, L. Minati, G. Nunzi Conti, S. Berneschi, I. Cacciari, S. Pelli, G.C. Righini, Advances in Science and Technology 55 (2008) pp 118-126.
  20. Structural and Spectroscopic Assessment of Er3+- activated SiO2-HfO2 Glass Ceramics Planar Waveguides. L. Minati, G. Speranza, Y. Jestin, C. Armellini, A. Chiappini, A. Chiasera, M. Ferrari, G.C. Righini, Advances in Science and Technology 55 (2008) pp 56-61.
  21. Raman scattering on on the l=2 spheroidal mode of spherical nanoparticles. D. Ristic, M. Ivanda, K. Furic, M. Montagna, M. Ferrari, A. Chiasera, Y. Jestin, Advances in Science and Technology 55 (2008) pp 132-137.
  22. Erbium doped fluoride glass-ceramics waveguides fabricated by PVD. O. Péron, B. Boulard, Y. Jestin, M. Ferrari, C. Duverger-Arfuso, S. Kodjikian, Y. Gao, Journal of Non-Crystalline Solids 354 (2008) pp. 3586-3591.
  23. Erbium-activated silica zirconia planar waveguides prepared by sol gel route. R.R. Gonçalves, Y. Messaddeq, A. Chiasera, Y. Jestin, M. Ferrari, S.J.L. Ribeiro, Thin Solid Films, 516 (2008) 3094.
  24. Er3+ -activated sol-gel silica derived spherical microresonators. G.C. Righini, C. Armellini, A. Chiasera, Y. Jestin, M. Ferrari, A. Chiappini, M. Montagna, C. Arfuso Duverger, P. Féron, S. Berneschi, M. Brenci, G. Nunzi Conti, S. Pelli, C. Gonçalves, and R.M. Almeida, Glass Technology – European Journal of Glass Science & Technology Part A 48 (2007) pp. 200-203.
  25. Low-loss optical Er 3+ -activated glass-ceramics planar waveguides fabricated by bottom-up approach. Y. Jestin, C. Armellini, A. Chiappini, A. Chiasera, M. Ferrari, E. Moser, R. Retoux, R. Righini, Applied Physics Letters 91 (2007) 71909.
  26. Low wavenumber Raman scattering of nanoparticles and nanocomposite materials. M. Ivanda, K. Furic, S. Music, M. Ristic, M. Gotic, D. Ristic, A. M. Tonejc, I. Djerdj, M. Mattarelli, M. Montagna, F. Rossi, M. Ferrari, A. Chiasera, Y. Jestin, G. C. Righini, W. Kiefe, R.R.Gonçalves, Journal of Raman Spectroscopy 38 (2007) 647-659.
  27. Er3+ activated silica inverse opals synthesized by the sol-gel method. A. Chiappini, C. Armellini, A. Chiasera, Y. Jestin, M. Ferrari, M. Matarelli, M. Montagna, E. Moser, C. Tosello, L. Zampedri, G. Numzi Conti, S. Pelli, R. Almeida, C.G. Righini, Optoelectronics letters 3 (2007) 184-187.
  28. Diagnostic techniques for photonics materials based on Raman and Brillouin spectroscopies. M. Matarelli, S. Caponi, A. Chaippini, M. Montagna, E. Moser, F. Rossi, C. Tosello, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, G. Numzi Conti, S. Pelli, C.G. Righini, Optoelectronics letters 3 (2007) 188-191.
  29. Synthesis improvement of Yb3+-activated SnO2 nanocrystals. E. Callone, G. Carturan, Y. Jestin, M. Ferrari, Solid State Phenomena 128 (2007) 31-39.
  30. Rare-earth-doped silica-based glasses for photonic applications. G. C. Righini, C. Armellini, S. Berneschi, S. N. B. Bhaktha, M. Brenci, I. Cacciari, A. Chiappini, A. Chiasera, M. Ferrari, Y. Jestin, E. Moser, G. Nunzi Conti, S. Pelli, C. Tosello, Journal of non Cristalline Solids 353 (2007)753-756.
  31. Erbium activated HfO2 based glass-ceramics waveguides for photonics. Y. Jestin, C. Armellini, A. Chiappini, A. Chiasera, M. Ferrari, C.Goyes, M. Montagna, E. Moser, G. Nunzi Conti, S. Pellic, R. Retoux, G.C. Righini, G. Speranza, Journal of non Cristalline Solids 353 (2007) 494-497.
  32. X-ray photoelectron spectroscopy of erbium activated silica hafnia waveguides. L. Minati, G. Speranza, M. Ferrari, Y. Jestin, A. Chiasera, Journal of non Cristalline Solids 353 (2007) 502-505.
  33. Design of photonic structures by sol gel-derived silica nanospheres. A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G.C. Righini, C. Gonçalves, R.M. Almeida. Journal of non Cristalline Solids 353 (2007) 674-678.
  34. XRD and EXAFS studies of HfO2 crystallization in SiO2-HfO2 films. N.D. Afiffy, G. Dalba, U. Mahendra Kumar Koppolu, C. Armellini, Y. Jestin, F. Rocca, Materials science in semiconductor processing, 9 (2006) 1043.
  35. High quality factor Er3+ activated dielectric microcavity fabricated by RF-sputtering. Chiasera, R. Belli, S.N.B. Bhaktha, A. Chiappini, M. Ferrari, Y. Jestin, E. Moser, C.G. Righini, C. Tosello. Applied physics letter 89 (2006) 171910.
  36. Nanocomposite Er-Ag silicate glasses. G. Speranza, S.N.B. Bhaktha, A. Chiappini, A. Chiasera, M. Ferrari, C. Goyes, Y. Jestin, M. Mattarelli, L. Minati, M. Montagna, G. Nunzi Conti, S. Pelli, G.C. Righini, C. Tosello, K.C. Vishunubhatla. Journal of Optics A: Pure and Applied Optics 8, (2006) 450-454.
  37. Erbium-activated modified silica glasses with high 4I13/2 luminescence quantum yield. S.N.B. Bhaktha, B. Boulard, S. Chaussedent, A. Chiappini, A. Chiasera, E. Duval, C. Duverger, S. Etienne, M. Ferrari, Y. Jestin, M. Mattarelli, M. Montagna, A. Monteil, E. Moser, G. Nunzi Conti, S. Pelli, H. Portales, G.C. Righini, K.C. Vishunubhatla. Optical Materials 28 (2006) 1325-1328.
  38. Influence of PrCl3/PrF3 on the optical and spectroscopic properties of fluorogallate ans fluoro-gallo-indate glasses. C. Duverger-Arfuso, B. Boulard, Y. Jestin, M. Ferrari, A. Chiasera, Opt. Mat 28 (2006) 441-447.
  39. Characterization of new sulfur and selenium-based glasses containing lead iodine. J. Troles, F. Smektala, Y. Jestin, L. Begoin, S. Danto, M. Guignard, Journal of non Cristalline Solids, 352 (2006) 248.
  40. Spectroscopic assessment of rare-earth activated planar waveguides and microcavities. L. Zampedri, C. Tosello, H. Portales, M. Montagna, M. Mattarelli, A. Chiappini, G.C. Righini, S. Pelli, G. Nunzi-Conti, M. Martino, S. Portal, A.C. Marques, R.M. Almeida, Y. Jestin, M. Ferrari, and A. Chiasera, Applied Surface Science 248 (2005) 3-7.
  41. Study of structural and optical properties of InSb-doped SiO2 thin fims. B. Capoen, V.Q. Lam, S. Turrell, J.P. Vilcot, F. Beclin, Y.Jestin, M. Bouazaoui, J-Non-Cryst-Solids, 351 (2005) 1819-1824.
  42. Structural properties and luminescence of rare earth ions in Transition Metal Fluoride Glasses (TMFG). B. Boulard, S. Guy, I. Vasiliev, Y. Jestin, C. Duverger, M. Ferrari, Philosophical magazine, vol 84, Nos 13-16, 1645-1650 (2004).
  43. Viscosity matching of new PbF2–InF3–GaF3 based fluoride glasses and ZBLAN for high NA optical fiber. Y. Jestin, A. Le Sauze, B. Boulard, Y. Gao and P. Baniel, J-Non-Cryst-Solids, Volume 320, Issues 1-3, 1 (2003) 231-237.
  44. Thermal and optical properties of chalcohalide glass. S. M. Lima, A. A. Andrade, T. Catunda, R. Lebullenger, F. Smektala, Y. Jestin and M. L. Baesso, J.Non-Cryst-Solids, 284 (2001) 203-209.
  1. Silicon solar cells with nano-crystalline silicon down shifter: experiment and modelling. Y. Jestin, G. Pucker, M. Ghulinyan, L. Ferrario, P. Bellutti, A. Picciotto, A. Collini, A. Marconi, O. Anopchenko, Z. Yuan, L. Pavesi, Proc SPIE Vol 7772 (2010) 77720B.
  2. Improving resonant photonics devices with sol-gel coatings. Y. Jestin, A.B. Matsko, A.A. Savchenkov, L. Maleki, Proc SPIE Vol 7194 (2009) 71940O-1.
  3. Photonic properties of erbium activated coated microspheres. Y. Jestin, C. Armellini, A. Chiappini, A. Chiasera, Y. Dumeige, M. Ferrari, P. Féron, L. Ghisa, G. Nunzi Conti, S. Trebaol, and G. C. Righini, Proc. SPIE Vol. 6890 (2008) 689008
  4. Ceramization of erbium activated planar waveguides by bottom-up technique Y. Jestin, C. Arfuso-Duverger, C. Armellini, B. Boulard, A. Chiappini, A. Chiasera, M. Ferrari, E. Moser, G. Nunzi Conti, S. Pelli, O. Peron, R. Retoux, GC. Righini, Proceding SPIE 6469-08 (2007).
  5. Erbium activated HfO2 based glass-ceramics waveguides for photonics Y. Jestin, C. Armellini, A. Chiappini, A. Chiasera, M. Ferrari, C.Goyes, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, R. Retoux, G.C. Righini, G. Speranza, SiO2006 6th symposium SiO2 advanced dielecrics and related devices
  6. Er 3+ activated silica-hafnia glass-ceramics planar waveguides. Y. Jestin, N. Afify, C. Armellini, S. Berneschi, S.N.B. Bhaktha, B. Boulard, A. Chiappini, A. Chiasera, G. Dalba, C. Duverger, M. Ferrari, C.E. Goyes Lopez, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G.C. Righini, F. Rocca. Proc SPIE 6183 (2006) 1W1-1W8.
  7. Fabrication of monosized silica spheres with customized diameter by sol-gel route. Y. Jestin, C. Armellini, A. Chiappini, A. Chiasera, M. Ferrari, M. Montagna, E. Moser, G.C. Righini, Proceedings – 13th International Workshop on Sol-Gel Science and Technology, Los Angeles, California, August 21-26, 2005, P85 pp.297-298.
  8. Er3+-activated silica-hafnia transparent glass-ceramics planar waveguides. Y. Jestin, N.D. Afify, C. Armellini, S.N.B. Bhatka, B. Boulard, A. Chiappini, A. Chiasera, G.Dalba, C. Duverger, M. Ferrari, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G.C. Righini, F. Rocca, C. Tosello, K.C. Vishunubhatla, L. Zampedri, Proceedings – 13th International Workshop on Sol-Gel Science and Technology, Los Angeles, California, August 21-26, 2005, P84 pp.295-296.

Material Investigation for Laser Amplification (MILA):

One specific objectives is the characterization of SiN and SiON micro-resonators and low loss waveguides previously designed and fabricated at the Micro-fabrication and Technologic Laboratory (MTLab) of the Fondazione Bruno Kessler (FBK). Those two materials or their combination i.e. SiN ring resonators and SiON bus waveguides, are actually tested for their implementation in the FD-FWM laser operating scheme, thus providing a feedback for the simulation of the laser structure and the optimization of the specific waveguides and micro-ring resonators geometry. Furthermore thanks to the good stability of the studied mode-locked laser, frequency combs which are of increasing interest for generation of radio-frequency reference signals, could be envisioned. In the first part of the present study, SiN and SiON thin films with different refractive index using various conditions of PECVD atmosphere with the purpose of obtaining high quality near stoichiometric have been prepared. Different deposition routines have been employed, including variable flow ratio of silane (SiH4) ammonia (NH3) and nitrous oxide (N2O) and deposited on to a silicon substrate. Films have been characterized in term of deposition rate, thickness, refractive index, surface morphology and composition. Waveguides made of SiN and SiON, have then been fabricated by PECVD process. The optimum geometry for light propagation and coupling between the waveguiding structure, and the ring resonators has been determined by simulation tools thus defining the optimum micro-fabrication parameters i.e. deposited thickness, etching depth and waveguide width. In figure 1 is presented the Mode profile at 1550 nm and losses calculation from 1480 to 1550 nm for a SiON waveguide.

Figure 1: Mode profile (left) at 1550 nm and losses calculation (right) from 1480 to 1550 nm for a SiON based waveguide.

A particular attention has been paid to the process control for the minimization of absorption losses and then for successful operation of the devices. The microresonators were characterized in typical waveguide transmission experiments in a broad near-infrared wavelength range between 1350 nm and 1600 nm. Figure 2a shows a series of sharp and broad resonances corresponding to first- (fundamental) and second-order radial mode families of the SiN based resonator. A blow- up of the spectrum around a fundamental mode is shown in the top panel of Figure 2b.

Figure 2: Left, the measured broad range spectrum of the wedge resonator shows a series of 1st and 2nd order radial family modes of TE-polarization. Right, the high-resolution spectra taken around a wavelength of 1554 nm is shown for the SiN resonators.

References

  1. M. Peccianti, A. Pasquazi, Y. Park, B.E. Little, S.T. Chu, D.J. Moss, R. Morandotti, Demonstration of a stable ultrafast laser based on a nonlinear microcavity, Nature Communication, 3:765 (2012) pp. 1-6.[2] M. Mbonye et al., Applied Physics Letters, 95, 233506 (2009).