mario_chemnitz

Mario Chemnitz

Post-Doc Fellow

mario.chemnitz@emt.inrs.ca

Mario Chemnitz is a trained physicist specialized in integrated nonlinear optics. He obtained his diploma degree in physics (Master’s equivalent) at the Friedrich-Schiller-University Jena, Germany, end 2011. In his diploma project he designed and implemented tuneable dual-wavelength fiber laser sources based on four-wave mixing for coherent Anti-Stokes Raman microscopy in the research group of Prof. Jens Limpert at the Institute of Applied Physics in Jena. After his graduation, he joined a postgraduate study program at the University of Cambridge, UK, which he completed in 2013 upon acceptance of his thesis „novel supercontinuum source for improved time-resolved spectroscopic sensing“. Back at the University of Jena, Mario started his doctoral studies in the research group of Prof. Markus Schmidt at the Leibniz Institute of Photonic Technology. His theoretical studies and experimental work revealed unprecedented coherence properties of supercontinuum spectra generated in highly noninstantaneous nonlinear liquid-core fibers as result of a modified (hybrid) soliton fission dynamics, indeed demonstrating a superior operation domain over nonlinear glass fibers. He received his PhD degree (suma cum laude) in early 2019, after successfully defending his PhD thesis entitled „soliton dynamics in liquid-core optical fibers“. Shortly after, he joined the research team of Prof. Roberto Morandotti as postdoctoral fellow, where he is now bringing in his expertise to develop novel telecom-compatible entangled photon sources.

 

  1. M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Optics Express 20, 4484-4493 (2012)
  2. M. Chemnitz, M. Baumgartl, T. Meyer, C. Jauregui, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy,” Optics Express 20, 26583-26595 (2012)
  3. T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics.,” Analytical Chemistry 85, 6703–6715 (2013)
  4. M. Chemnitz and M. A. Schmidt, “Single mode criterion – a benchmark figure to optimize the performance of nonlinear fibers,” Optics Express 24, 16191–16205 (2016)
  5. T. Wieduwilt, M. Zeisberger, M. Thiele, B. Doherty, M. Chemnitz, A. Csaki, W. Fritzsche, and M. A. Schmidt, “Gold-reinforced silver nanoprisms on optical fiber tapers – A new base for high precision sensing,” APL Photonics 1, 066102 (2016)
  6. M. Chemnitz, J. Wei, C. Jain, B. P. Rodrigues, T. Wieduwilt, J. Kobelke, L. Wondraczek, and M. A. Schmidt, “Octave-spanning supercontinuum generation in hybrid silver metaphosphate/silica step-index fibers,” Optics Letters 41, 3519-3522 (2016)
  7. S. C. Warren-Smith, J. Wie, M. Chemnitz, R. Kostecki, H. Ebendorff-Heidepriem, T. M. Monro, and M. A. Schmidt, “Third harmonic generation in exposed-core microstructured optical fibers,” Optics Express 24, 17860-17867 (2016)
  8. M. Chemnitz, G. Schmidl, A. Schwuchow, M. Zeisberger, U. Hübner, K. Weber, and M. A. Schmidt, “Enhanced sensitivity in single-mode silicon nitride stadium resonators at visible wavelengths,” Optics Letters 41, 5377-5380 (2016)
  9. S. Pumpe, M. Chemnitz, J. Kobelke, and M. A. Schmidt, “Monolithic optofluidic mode coupler for broadband thermo- and piezo-optical characterization of liquids,” Optics Express 25, 22932-22946 (2017)
  10. M. Chemnitz, M. Zeisberger, and M. A. Schmidt, “Performance limits of single nano-object detection with optical fiber tapers,” Journal of the Optical Society of America B 34, 1833-1841 (2017)
  11. M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nature Communications 8, 42 (2017)
  12. S. C. Warren-Smith, M. Chemnitz, H. Schneidewind, R. Kostecki, H. Ebendorff- Heidepriem, T. M. Monro, and M. A. Schmidt, “Nanofilm-induced spectral tuning of third harmonic generation,” Optics Letters 42, 1812-1815 (2017)
  13. A. Tuniz, M. Chemnitz, J. Dellith, S. Weidlich, and M. A. Schmidt, “Hybrid-Mode-Assisted Long-Distance Excitation of Short-Range Surface Plasmons in a Nanotip-Enhanced Step-Index Fiber,” Nano Letters 17, 631-637 (2017)
  14. R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in anti-resonant hollow-core fibers,” Light: Science & Applications 6, e17124 (2017)
  15. M. Plidschun, M. Chemnitz, and M. A. Schmidt, “Low-loss deuterated organic solvents for visible and near-infrared photonics,” Optical Materials Express 7, 1122-1130 (2017)
  16. M. Chemnitz, R. Scheibinger, C. Gaida, M. Gebhardt, F. Stutzki, S. Pumpe, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Thermodynamic control of soliton dynamics in liquid-core fibers,” Optica 5, 695-703 (2018)
  17. M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Optics Express 26, 3221-3235 (2018)
  18. S. C. Warren-Smith, K. Schaarschmidt, M. Chemnitz, E. P. Schartner, H. Schneidewind, H. Ebendorff-Heidepriem, and M. A. Schmidt, “Tunable multi-wavelength third-harmonic generation using exposed-core microstructured optical fiber,” Optics Letters 44, 626-629 (2019)
  1. M. Chemnitz, M. Baumgartl, C. M. Jauregui, J. Limpert, and A. Tünnermann, “Justagefreie ps-Faserlaserquelle auf Basis von Vierwellenmischung für kohärente Raman-Mikroskopie,” in 75th Annual Meeting and Spring Meeting of the DPG (Deutsche Physikalische Gesellschaft, 2011), p. Q 63.2
  2. M. Baumgartl, M. Chemnitz, C. Jauregui, T. Gottschall, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Fiber Optical Parametric Frequency Conversion: Alignment and Maintenance Free All-fiber Laser Concept for CARS Microscopy,” in Conference on Lasers and Electro-Optics 2012 (OSA, 2012), p. CF1B.4
  3. M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Alignment and maintenance free all-fiber laser source for CARS microscopy based on frequency conversion by four-wave-mixing,” in Proc. SPIE 8247, A. Heisterkamp, M. Meunier, and S. Nolte, eds. (2012), p. 82470F–7
  4. M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tunnermann, “Fiber optical parametric frequency conversion: Alignment and maintenance free all-fiber laser concept for CARS microscopy,” in 2012 Conference on Lasers and Electro-Optics, CLEO 2012 (2012)
  5. T. Gottschall, M. Baumgartl, M. Chemnitz, J. Abreu-Afonso, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS-microscopy,” in 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC (IEEE, 2013), pp. 1–1
  6. M. Chemnitz, Z. Qu, S. Dupont, S. R. Keiding, and C. F. Kaminski, “Supercontinuum generation in an all-normal dispersion fiber for broadband MHz absorption spectroscopy,” in Doctoral Conference on Optics DoKDoK (2013), pp. 32–33
  7. A. Tuniz, M. Chemnitz, J. Dellith, S. Weidlich, and M. A. Schmidt, “Deep sub-wavelength and broadband light delivery using an all-fiber plasmonic nanotip-enhanced near-field probe,” in Frontiers in Optics 2016 (OSA, 2016), FW3E.4
  8. M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Limpert, and M. Schmidt, “Temperature-based wavelength tuning of non-solitonic radiation in liquid-core fibers,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (2015), Vol. 7, p. 10953
  9. M. Chemnitz and M. A. Schmidt, “The wet journey towards widely tunable MIR light sources: highly nonlinear liquid-core fibers,” in Doctoral Conference on Optics DoKDoK (2015), p. 20–21
  10. M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Limpert, and M. A. Schmidt, “Soliton-based MIR generation until 2.4μm in a CS2-core step-index fiber,” in Frontiers in Optics 2015 (OSA, 2015), p. FW5F.2
  11. M. Chemnitz, C. Jain, and M. A. Schmidt, “Transformable material fibers – A new route for tunable broadband light sources,” in Doctoral Conference on Optics DoK-DoK (2016), pp. 48–49
  12. M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Limpert, and M. A. Schmidt, “Indications of new solitonic states within mid-IR supercontinuum generated in highly non-instantaneous fiber,” in Conference on Lasers and Electro-Optics (OSA, 2016), p. FF1M.4
  13. S. C. Warren-Smith, J. Wei, M. Chemnitz, R. Kostecki, H. Ebendorff-Heidepriem, T. M. Monro, and M. A. Schmidt, “Wavelength shifted third harmonic generation in an exposed-core microstructured optical fiber,” in 2017 Opto-Electronics and Communications Conference, OECC 2017 and Photonics Global Conference, PGC 2017 (2017)